

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS	
SESSION: JUNE 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Prof Dipti Ranjan Sahu	
MODERATOR:	Prof S. C. Ray	

INSTRUCTIONS	
1. Answer ALL the questions.	
2. Write clearly and neatly.	
3. Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

[25]

(2)

(5)

1.1 Consider the circuit as shown in the below figure with a 3Ω resistor and a 1-H inductor.

- Write down the differential equation of the circuit where current i is flowing clockwise. 1.1.1
- 1.1.2 Solve the differential equation for the current as a function of time. (5)
- 1.1.3 Determine the current as a function of time in this circuit given that its initial value is 6 A (3)
- 1.2 Solve the differential equation $(y^2-x) dx + 2ydy = 0$ (10)
- 1.3 Find the general solution of the differential equation.

$$\frac{dx}{dt} + t^2 x = 0 \tag{5}$$

Question 2 [25]

- 2.1 A 50g mass attached to a spring, moving in air with initial conditions y (0) = 4 cm and y' (0) = 40 cm/s. The spring is such that a 30 g mass stretches it 6 cm. Approximate the acceleration of gravity is 1000 cm/s2.
 - Formulate the differential equation and find the movement of the mass position at any time t. (10)
- 2.2 Find the general solution of $x'' - 3x' + 2x = 2t^2 + 1$ (10)
- 2.3 Find a particular solution of $x'' - x = 3e^{-t}$ (5)

Question 3 [25]

3.1 Use matrices to find the solution for the set of equation as given below (10)

$$4x + 8y + z = -6$$

$$2x - 3y + 2z = 0$$

$$x + 7y - 3z = -8$$

3.2 Find the eigen values of the matrix A given as (10)

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

3.3

Find k if
$$A = \begin{bmatrix} k-2 & 1 \\ 5 & k+2 \end{bmatrix}$$
 is singular

Question 4 [25]

- Show that for inner product space $C[-\pi, \pi]$, the functions Sint and Cost are orthogonal. (5)
- 4.2. Obtain an orthogonal basis for the subspace of R4 spanned by $x_1 = (1, 0, 1, 0)$, $x_2 = (1, 1, 1, 1)$, $x_3 = (-1, 2, 0, 1)$ using Gram-Schmidt process. (10)
- 4.3 Using the Laplace transform find the solution for the following equation $\frac{\partial y(t)}{\partial x} 5 \text{ y(t)} = e^{(5 \text{ t})} \text{ with initial conditions y(0)} = 0 \text{ Dy(0)} = b$ (5)
- 4.4 Obtain the value of P₃ (x) using Rodrigues' formula $P_n(x) = \frac{1}{(2^n)^{n!}} \frac{d^n}{dx^n} (x^2 1)^n$ (5)